>

遗传发育所解析生长素调控叶片展开的分子机制

- 编辑:美洲杯足球彩票 -

遗传发育所解析生长素调控叶片展开的分子机制

美洲杯足球彩票 1控制叶片近-远轴极性建成的,远非只有生长素这一个因素。图片:shutterstock.com

叶片是植物进行光合作用的主要器官。为最大限度提高光合能力,高等植物的叶片进化出了具有极性的扁平形状。虽然叶片的展开对于高效光合至关重要,人们尚不了解叶片原基如何在发育过程中展开以形成扁平结构。 中国科学院遗传与发育生物学研究所焦雨铃研究组的最新研究发现,植物激素生长素对于叶片原基的展开至关重要。在前期的研究中,焦雨铃研究组发现叶片原基中存在生长素浓度差异,近轴面(叶片靠近茎尖一侧,即背面)生长素浓度低,远轴面生长素浓度高(2014, PNAS 111:18769-18774)。通过对生长素、生长素信号转导通路下游的响应因子进行精细成像,该研究组进一步发现生长素与下游响应因子MP仅存在部分重叠,从而在近-远轴面之间的中间区界定了高生长素信号。进而,MP可以直接激活WOX1和PRS在中间区特异的表达。WOX1和PRS是中间区形成的决定因子,是叶片向两侧展开的关键。此外,叶片远轴面特异表达的生长素通路下游响应因子ARF2、ARF3和ARF4直接抑制WOX1和PRS在远轴面区域的表达。MP和ARF2/3/4的共同作用使WOX1和PRS在叶片中间区域特异表达,从而使叶片能够展开。 上述结果阐述了叶片形成过程中,近-远轴极性通过生长素信号通路介导转换为中-边轴极性,从而使叶片展开的分子机制。该课题组最近的另一项研究从生物力学的角度解释了中间区的重要性和生长素对叶片发育的调控(2017, Nature Plants 3:724-733)。 该研究成果于9月22日在线发表在Current Biology杂志上(DOI:10.1016/j.cub.2017.08.042)。焦雨铃研究组助理研究员关春梅为论文第一作者。该研究得到了科技部973项目、国家自然科学基金和植物基因组学国家重点实验室的资助。美洲杯足球彩票 2生长素及其响应因子通过调控WOX基因表达指导叶片展开

然而,分子遗传学的研究告诉我们,实际上植物中的近-远轴调控要更为复杂;而以往的分子遗传学研究也确实找出了不少在近-远轴分化中起到重要作用的调控因子。如果将一个植物体比作一辆汽车,植物体内的基因就是一个个汽车零件。  当汽车的某个零件被卸掉之后,汽车无法转向,就可以得出结论该零件为汽车转向所必须。而分子遗传学研究正是通过类似的方法来找出植物特定发育过程中的必须“零件”——当一些基因通过随机诱变的方法被“卸掉”,如果出现叶片极性发育的问题,比如植物长出喇叭叶,就说明被卸掉的基因在叶片极性发育过程中起作用。如果我们再能够往回追溯找出是哪个基因被“卸掉”,那么我们就知道这个基因能够调控叶片极性发育。

美洲杯足球彩票 3叶片的正反两面往往具有很大的差别。图片:shutterstock.com

美洲杯足球彩票 4在植物体内,生长素是如何通过PIN蛋白(绿色)从组织的一端传递向另一端的。图片:The Plant Cell/Teaching Tools in Plant Biology

我们最新的研究结果表明,正是PIN蛋白介导的生长素运输产生了叶片极性发育信号,信号的化学本质就是生长素。萨塞克斯根据手术实验得到的推论是正确的,然后也有错误的地方。信号分子(生长素)不是由茎尖干细胞向叶片的近轴面扩散,而是通过主动运输从叶片运向茎尖干细胞。如此看来,萨塞克斯的猜测把方向弄反了。近轴面不是由于积累了生长素,而是由于生长素含量低,而导致近轴面发育的。如果提高了近轴面的生长素含量,近轴面就会发育成为远轴面,从而形成喇叭叶或者棒状叶——和萨塞克斯实验一样的结果!生长素的近-远轴差异非常短暂,叶片发生几天后就会消失,而正是在这几天内,近-远轴分化完成。运向茎尖干细胞的生长素不仅导致了近轴面低生长素区域的建立,也被茎尖干细胞用来起始后续叶片的发生。叶片的发生伴随着生成素高点的依次形成。

Sussex信号似乎很好地解释了极性的来源,可是对于它到底是由什么物质介导的,甚至它是否存在,一直众说纷纭。分子遗传学研究使我们知道了很多编码蛋白和小RNA的基因都存在近-远轴差异分布,但是却没能为Sussex信号提供新的线索。沉寂了近半个世纪后,许智宏先生课题组在上世纪末的一项研究为这个领域带来了一缕曙光。许先生在组织培养的白菜、烟草等多种植物中都发现,加入了生长素(Auxin)的运输抑制剂能够诱发喇叭叶和棒状叶产生。这说明生长素和它的运输与叶片极性发育有关。

那么,如此重要的叶片近-远轴极性是怎么产生的呢?就这一问题,我们在2014年12月30日的《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)上发表了一篇研究论文美洲杯足球彩票,。 在该研究中,我们揭示了生长素这一最早被了解的植物激素,在叶片正反面形成过程中的作用。叶片原基背腹面存在生长素浓度差异,而这一差异是导致叶片背腹面分化的主要原因之一。简而言之就是远轴面是“宿命”,而近轴面的形成需要相对较低的生长素浓度。

有一些转录因子在叶片近-远轴的极性分布出现得很早,从时间上来看似乎不晚于生长素的极性分布,因而这类调控因子可能并不受生长素的影响。如此看来,也许有两套平行的叶片调控机制在共同起作用。这些转录因子和小RNA间又存在着复杂的相互调控和牵制,盘根错节,它们和生长素在小小的叶片原基中纠缠在了一起。

那么,自然为什么要选择这么复杂的调控方式呢?对这些基因调控网络的数学建模和模拟显示,复杂的调控更为稳定,而不容易受到环境条件轻微变化和植物内单个信号通路突变的影响,一种方式失败了,另一种方式可以非常迅速地弥补上来。叶片两面不同的发育也许同样需要多种方式来调控,而这些多种方式的共存并立使得叶片的两面发育更稳定。否则,也许我们会频繁看到不正常的叶片出现,而这样的植物由于光合效率受累也容易出现其它的发育问题。至于这些通路之间到底存在着怎样一种和谐而对立的关系,什么机制保障了它们之间有序有效的协作,还有待分子遗传学研究带给我们进一步的答案。(编辑:老猫)

一批这样的基因就通过分子遗传学的办法被发现了,其中很多基因编码转录因子。转录因子调控其它基因的转录,就像军队里大大小小的指挥官,控制着或多或少的下游基因。这些转录因子有些在近轴面特异表达,有些在远轴面特异表达。它们在自己表达的区域号令下游的基因军团,最终形成了近-远轴截然不同的发育模式和生理功能。

 

本文由科技中心发布,转载请注明来源:遗传发育所解析生长素调控叶片展开的分子机制